Niveaux d'exposition aux substances per- et polyfluoroalkylés (PFAS) chez les pompiers : une revue de littérature sur la matrice sanguine.

Safa Berdi^a, Nolwenn Noisel^{a,b}, Sabrina Gravel^{a,b,c}.

INTRODUCTION

Les **PFAS** sont des **substances chimiques synthétiques** caractérisées par :

- Leurs propriétés physicochimiques uniques.
- Leur persistance très élevée dans l'environnement.
- Leurs effets potentiels sur la santé, incluant le cancer (en 2023, le CIRC a classé le PFOA cancérogène certain¹).

Les **pompiers** sont particulièrement vulnérables en raison de l'usage de **mousses extinctrices**² et des **équipements de protection**³.

CADRE DE LA REVUE

Question de recherche:

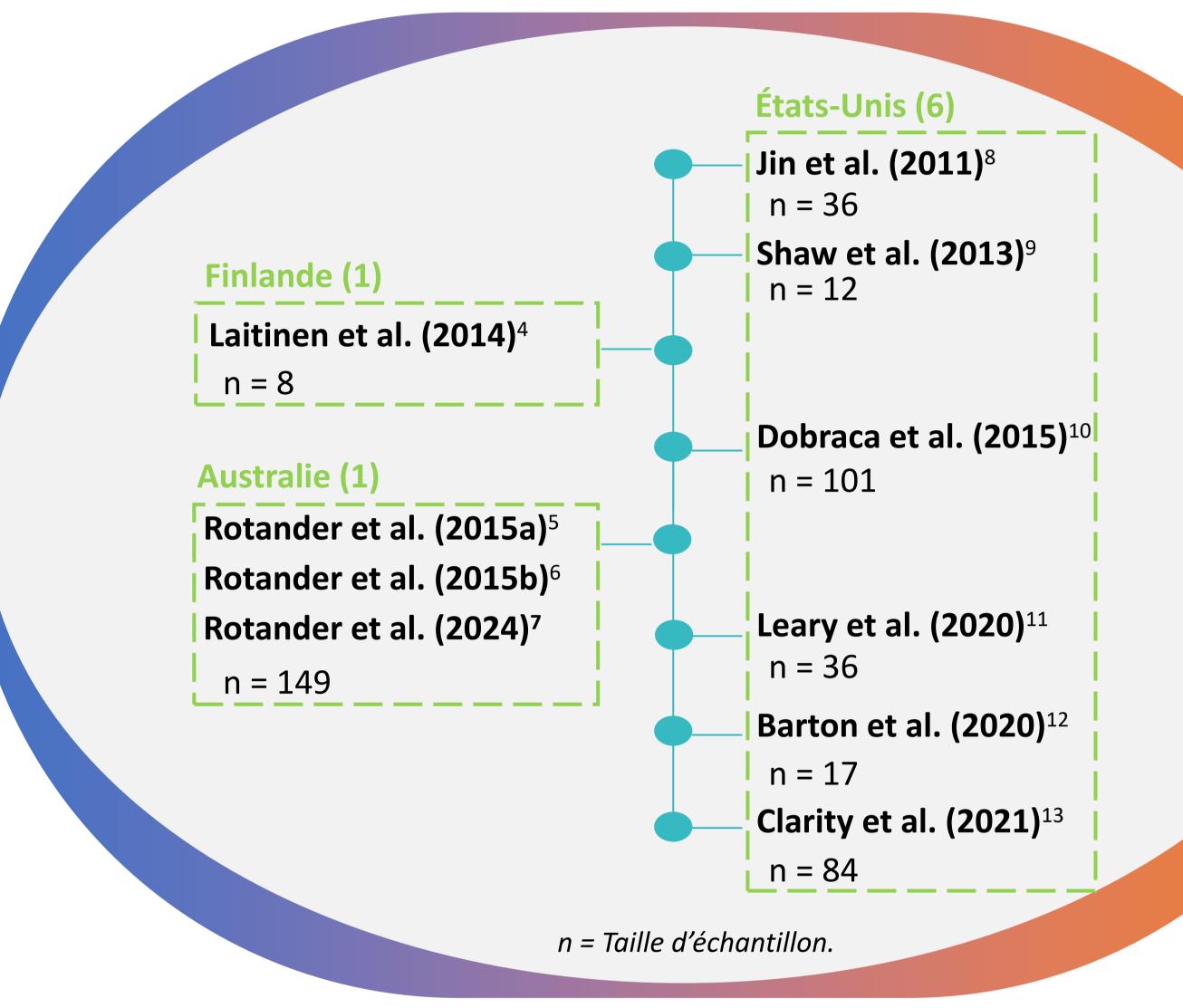
Quelles sont les concentrations sanguines reliées à l'exposition aux PFAS chez les pompiers ?

Objectifs:

- ☐ Recenser les **niveaux sanguins** de PFAS rapportés chez les pompiers.
- ☐ Identifier les **molécules** les plus fréquemment recherchées ou détectées, leurs **quantités** et **les différences** observées entre les études.
- ☐ Identifier les **principaux facteurs** susceptibles d'influencer ces niveaux.

Méthodologie:

- Base de données : MedLine.
- Concepts: (1) PFAS, (2) Biosurveillance, (3) Travailleurs.
- Limites: « Humains »; « Adultes ».
- **125 articles** identifiés.


Sélection :						
Inclus	Exclus					
pompiers professionnels, adultes,	Non-travailleurs, autres					
PFAS mesurés dans le sang,	professions, enfants, animaux,					
résultats quantifiables, articles en	absence de résultats séparés,					
français ou anglais.	réanalyses secondaires.					
10 átudos rotopuos dont 2 portant sur la mômo						

10 études retenues, dont 3 portant sur la même population.

Sélection finale : 8 études uniques

RÉSULTATS ET DISCUSSION

☐ Études recensées :

- ☐ PFAS étudiés et prédominants :
- 8 PFAS détectés chez tous les participants: PFOS, PFHxS, PFOA, PFNA (7 études); PFDA (2 études); PFDeA, N-MeFOSAA, PFUA (1 étude).
- Autres PFAS détectés moins fréquemment: PFHpA, PFDA, PFUnDA,
 PFTrDA, PFBS, PFDS, PFBuS, PFDoA, PFOSA, N-EtFOSAA, PFHpS.
- Prédominance :

MG = moyenne géométrique.

	Références	Indicateurs	PFOS	PFHxS	PFOA	PFNA
	Jin et al. (2011)	Med/ Moy*	27,85/29,18	4,6/5,87	31,5/87,47	1,60/1,77
		MG	24,37	4,77	37,69	1,56
	Shaw et al. (2013)	Med/ Moy*	9/12	1/1	6/7	2/2
	Laitinen et al. (2014)	Med	11,1	2,19	2,94	1,22
	Rotander et al. (2015a,	Med/ Moy*	66/74	25/33	4,2/4,6	0,69/0,76
	2015b et 2024)					
	Dobraca et al. (2015)	MG	12,5	2,26	3,75	1,15
	Leary et al. (2020)	Med	10,69	6,45	2,17	0,45
	Barton et al. (2020)	MG	14	16	3,1	0,47
	Clarity et al. (2021)	MG	4,33	4,55	1,33	0,77
Med = médiane. Dégradé vert = PFAS du plus au moins prédominant par étude (du plus j Moy* = moyenne arythmique. Valeurs en rouge gras = niveaux les plus élevés rapportés parmi toutes j						•

Des niveaux similaires ont été observés pour certains PFAS dans différentes études. L'utilisation de différents indicateurs de distribution rend la comparaison entre les études incomplète.

Encadré rouge = valeur liée à une contamination généralisée de l'eau potable par le PFOA.

- ☐ Comparaison d'exposition :
- Niveaux plus élevés que la population générale pour plusieurs PFAS (PFHxS, PFOS, PFOA, PFNA et PFUnDA):
 PFOA et PFNA ≈ 2× 9; PFOS ≈ 6-10× 6; PFHxS ≈ 10-15× 6.
- Niveaux élevés de certains PFAS selon le contexte professionnel : Pompiers seniors > juniors (PFOA 2×, PFOS 11×, PFHxS 17×) 7. Pompiers d'aéroport > municipaux 11.
- Concentrations similaires ou inférieures à la population générale, sauf pour PFDeA (≈ 3× plus élevé) ¹⁰.
- Accumulation de PFHxS (+17 %) et PFNA (+10 %) après simulation d'accident d'avion ⁴.
- ☐ Facteurs d'exposition :
- Âge et nombre d'années d'expérience (ancienneté).
- Usage professionnel de mousses extinctrices (notamment classe A).
- Exposition fréquente aux incendies commerciaux.
- Participation régulière à des interventions impliquant des matières dangereuses.
- Absence de décontamination professionnelle des équipements de protection individuelle.

LACUNES

Les études sur l'exposition des pompiers aux PFAS sont rares et fragmentées ; aucune étude canadienne à ce jour.

Peu de données existent sur les niveaux d'exposition des pompiers aux PFAS.

L'absence de valeurs limites biologiques rend l'interprétation des niveaux d'exposition difficile.

Références

- 1. Zahm et al. (2023). Lancet Oncol. doi:10.1016/S1470-2045(23)00622-8
- 2. Barros et al. (2023). J. Toxicol. Environ. Health B, 26(3), 127–171. doi:10.1080/10937404.2023.2172119
- 3. Mazumder et al. (2023). Fire Technol. doi:10.1177/15280837231217401
- 4. Laitinen et al. (2014). Toxicol. Lett., 231(2), 227–232. doi:10.1016/j.toxlet.2014.09.007
- 5. Rotander et al. (2015a). Environ. Sci. Technol., 49(4), 2434–2442. doi:10.1021/es503653n 6. Rotander et al. (2015b). Environ. Int., 82, 28–34. doi:10.1016/j.envint.2015.05.005
- 7. Rotander et al. (2024). Sci. Total Environ., 953, 176004. doi:10.1016/j.scitotenv.2024.176004
- 8. Jin et al. (2011). J. Occup. Environ. Med., 53(3), 324–328. doi:10.1097/JOM.0b013e31820d1314
- 9. Shaw et al. (2013). Chemosphere, 91, 1386–1394. doi:10.1016/j.chemosphere.2012.12.070 10. Dobraca et al. (2015). J. Occup. Environ. Med., 57(1), 88–97. doi:10.1097/JOM.000000000000307
- 11. Leary et al. (2020). J. Occup. Environ. Med., 62(1), 45–49. doi:10.1097/JOM.000000000001756
- 12. Barton et al. (2020). Int. J. Hyg. Environ. Health, 223, 256–266. doi:10.1016/j.ijheh.2019.07.002 13. Clarity et al. (2021). Environ. Health, 20(1), 97. doi:10.1186/s12940-021-00778-z

le CReSP est issu d'un partenariat entre

