

Improving Exposure Judgments in Industrial/Occupational Hygiene

Through the Strategic Use of IH Tools, focusing on the Structured Deterministic Model (SDM) 2.0 | Susan Arnold, PhD, CIH FAIHA

arnol353@umn.edu

SCHOOL OF PUBLIC HEALTH

UNIVERSITY OF MINNESOTA

Logistics

Agenda

Technology (Poll Everywhere)

- Case for Improvement
- Introduction to the Structured Deterministic Model (SDM 2.0)
 - Algorithms and decision logic
 - Navigating SDM 2.0

License & download: <u>https://license.umn.edu/product/structured-deterministic-model-sdm-20</u>

Case studies

Practice - using Polling

Using your computer or cell phone to respond!
From web: <u>https://pollev.com/susanarnold390</u>
Join by Text: Send **susanarnold390** to **22333**

Occupational Exposure Assessment Strategies

- The design of an exposure assessment strategy should be driven by the reason for obtaining samples
- Routine monitoring of worker exposures to chemicals in a workplace and comparing them against occupational exposure limits (OELs)

To determine a relationship between exposure and the health outcome in an occupational epidemiology study, which in turn might lead to the establishment of new standards

IH Effectiveness Goal:

Ensure that no worker has unacceptable exposures

Occupational Exposure Assessment Strategies

- Exposures vary between workers, over time, shift, and location
 - The sampling strategy should be effective in capturing this variability
- At the same time, the strategy must be feasible and efficient in that it should not require an inordinately large number of samples
 - Occupational hygienists usually operate with limited resources that preclude large sample sizes

The Observational Approach to Creating Similar Exposure Groups (SEGs)

Exposure Distributions within the Worker Population in a Workplace

Between and Within-Worker Variability

- The classification of workers into similar exposure groups (SEGs) facilitates the efficient exposure assessment of large numbers of workers
- By randomly sampling workers within each SEG, the exposure distribution for each SEG can be estimated

Examples of Decision Strategies

Exposures are judged to be acceptable:

- If all the measurements in a dataset are below the OEL
- If all the measurements in a dataset are below the Action Level (AL)
- When the exposure metric (e.g., 95th percentile) is below the corresponding OEL or AL
- When the exposure metric falls into the desired exposure band.

Employee perform employee all 100 t Occupational Expo	ns a job 100 times per year. If you collected personal samples on the times, how many times is it acceptable for exposures to exceed the osure Limit (OEL) without a respirator?	∞⁄⁄ 0
0 samples		0%
1 sample		090
		0%
5 samples		00/
10 samples		0%
10 sumples		0%
25 samples		
E0 complex		0%
50 samples		0%
	Start the presentation to see live content. For screen share software, share the entire screen. Get help at polley.com/app	

Most common nun	nber of air samples used to make a judgment about exposure?	c 🖓 0
>10		
		0%
6 to 10		0%
3 to 5		0%
1 or 2		0%
0		070
		0%
	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app	

Exposure Scenario: OEL OEL = 10 ppm, GSD = 2.5, AL=5 ppm

EF	GM	95th % (ppm)	Distri- bution <oel< th=""><th colspan="4">Percentage of Time that All Measurements of Dataset Size N (N=1, 2, 3, 4, or 5) Will Fall Below the OEL (%)</th></oel<>	Percentage of Time that All Measurements of Dataset Size N (N=1, 2, 3, 4, or 5) Will Fall Below the OEL (%)				
			1	2	3	4	5	
0.50	10.0	45.15	0.500	50.0	25.0	12.5	6.25	3.13
0.25	5.39	24.32	0.750	75.0	56.3	42.2	31.6	23.7
0.10	3.09	13.95	0.900	90.0	81.0	72.9	65.6	59.1
0.05	2.22	10.00	0.950	95.0	90.3	85.7	81.5	77.4

EF = Exceedance Fraction Mean 95th % = 95th Percentile GSD = Geometric Standard Deviation

GM = *Geometric*

AL= Action Level

15

Decision Making using the AIHA Exposure Assessment Strategy

Effectiveness and Efficiency of Strategies for Decision Making

- Effectiveness the ability to reach a correct decision;
- Efficiency the ability of an exposure assessment strategy to reach a decision with a minimum or tolerable expenditure of resources;
- Goal: a <u>high probability</u> of detecting a clearly unacceptable group exposure profile. To minimize the number of workers whose upper percentile exposures are greater than the OEL.

How Does One Fix the Exposure Assessment Paradigm?

•Give comparable weight to quantitative measurements, modeling (mathematical, statistical and determinist), rules-of-thumb and professional judgment.

What is "Professional Judgment" ?

 The application and appropriate use of knowledge gained from the formal education, experience, experimentation, inference, and analogy. The capacity of an experienced professional to draw correct inferences from incomplete quantitative data, frequently on the basis of observations, analogy and intuition.

Experienced professional Correct inferences

 Ref: Bullock. W.H. and Ignacio, J.S: (editors) A Strategy for Assessing and Managing Occupational Exposures, Third Edition. Fairfax, VA: American Industrial Hygiene Association (2006).

The Motivator

- Majority of exposure judgments are qualitative (have data for only ~ 2-5%)
- AIHA EA Strategy relies on accurate qualitative assessments
- Judgments based on intuitive professional judgment are INACCURATE and UNDERESTIMATE exposure

Professional judgment accuracy with monitoring data

23

Below Below Correctove Above Above 3

Below Below CorrecAbove Above 2 bove 3

Bayesian PDC PCIH 2012' - DIT Scores

Rules of Thumb for Estimating the 95th Percentile

- IHs typically don't use statistical tools to interpret monitoring data; instead they "eyeball" the data.
- Simple <u>Rules of Thumb</u> based on lognormal statistics improved judgment accuracy significantly.

Use statistical tools!!

Professional judgment accuracy <u>without</u> monitoring data

Qualitative Judgments not better than random chance - Video Judgments

P. Logan, G. Ramachandran, J. Mulhausen and P. Hewett "Occupational Exposure Decisions: Can Limited Data Interpretation Training Help Improve Accuracy?". Annals of Occupational Hygiene - 2009

Qualitative Judgments not better than random chance -Real Workplace Judgments

Vadali, Monika, et al. "Effect of Training on Exposure Judgment Accuracy of Industrial Hygienists." *Journal of Occupational and Environmental Hygiene* 9, no. 4 (April 2012): 242-56. https://doi.org/10.1080/15459624.2012.666470.

30

When poll is active, respond at pollev.com/susanarnold390
 Text SUSANARNOLD390 to 22333 once to join

How do we define 'acceptable' exposures?

No exceedences (100 percentile < OEL)

Less than 1% exceedance

Less than 5% exceedance

Less than 10% exceedance

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

External Sources for Inconsistent Judgments

- Variable Definitions of Acceptable
- Variable Definitions of Acceptable Uncertainty

While not consensus, many seem to settle in on 95%ile and would seem to desire 95% confidence.

Structured Approaches to Decision Making

Rule of 10 (ROT): Pure chemicals & Chemical Mixtures

How Can We Improve Our Qualitative Judgments?

Learn from our colleagues in psychology . . .

- Systematic and Transparent Exposure Decision Processes
- Focused Training and Coaching
- Accurate Feedback Mechanisms
- Repeated Practice

How does the Checklist Tool (SDM) Improve Exposure Judgment Accuracy?

- ✓ Uses OBJECTIVE inputs
- Produces ACCURATE & consistent outputs
- \checkmark Applies to a broad range of scenarios
- \checkmark Is easy to use
- Even easier with 'the Structured Deterministic Model (SDM) 2.0 Tool'

The Structured Deterministic Model

- Applying simple algorithms or heuristics to improve judgment accuracy
- Algorithms based on physical chemical principles, developed empirically, through experience
- Structured, like a checklist that ensures consistent application, every time

Results - Post-Checklist Training Accuracy, Practicing IHs

Arnold SF, Stenzel M, Drolet D, et al. Using checklists and algorithms to improve qualitative exposure judgment accuracy. J Occup Environ Hyg 2016; 13: 159-168. DOI: 10.1080/15459624.2015.1053892.
Results - Post-Checklist Training Accuracy, Novice IHs

accuracy. J Occup Environ Hyg 2016; 13: 159-168. DOI: 10.1080/15459624.2015.1053892.

Using the Structured Deterministic Model (SDM) 2.0

Recommended for agents that are:

Pure or relatively pure volatile or semi-volatile chemicals and chemical mixtures

 \checkmark Fibers, particulates or aerosols

ECC: exposure control category

Glossary OEL: occupational exposure limit

ObsLC: observed or reported level of control

PHR: particulate hazard ratio

ReqLC: required level of (engineering) control

SVC: saturated vapor concentration

VP: vapor pressure (mmHg)

VHR: vapor hazard ratio

41

Checklist 1.

Evaluating volatile chemical exposures Using the Rule-of-10

Vapor Pressure (VP)-1

- Pressure exerted by the gaseous phase of a two phase—gas/liquid or gas/solid system
- Pressure that is formed above its liquid or solid
- If a substance is in an enclosed place, the two phase system will arrive at an equilibrium state
 - Dynamic, balanced condition with no change of either phase
 - For a specific temperature, VP measured at equilibrium state is called equilibrium or saturated vapor pressure
- Fraction of the total pressure, which is equal to 760 mmHg at sea level

Vapor Pressure VP-2

- Vapor pressure changes (increases) with temperature
- When comparing VP, must use some comparable temperature (e.g. 25 °C)
- VP at agent's boiling point = 760 mm of Hg (atmospheric pressure)
- VP of specific agents in mixtures is lower than agent's VP in its pure state
- VPs and BP usually reported on SDS or are available in standard sources (e.g., PubChem, HSDB, NIOSH Pocket Guide)

1. Rule of 10

Saturation (SVC) = Vapor Pressure (VP) (mm Hg)/760 mm Hg X 10⁶

	Level of Control		Fraction of Saturation Vapor Concentration (SVC)	Example/Description			
1			1/10 th of Saturation	Example: Confined space with virtually no mechanical ventilation (< 1 air change/hour (ACH))			
2	Poor		1/ 100 th of Saturation	Example: Confined space with limited ventilation (1- 3 ACH); or if there is ventilation > 3 ACH, the ventilation is not configured properly to result in 1 – 3 ACH in the workers breathing zone. Note that there may be fans in the workplace, but there is limited makeup air resulting in the fans only circulating air, not supplying fresh or uncontaminated air.			
3	Good – General Ventilation – protected outdoor areas who minimal wind) - Displaced air	rs (or in re is	1/300 th of Saturation	Where typically, indoor work areas are designed to have ~3 to 6 ACH in a manufacturing work setting, where displaced air also occurs, it can negatively impact on the effectiveness of the designed control. Displaced air refers to air that is being introduced into the air from a source under greater pressure that of the rest of the area. An example is a release of contaminated air that occurs when worker opens a tank while the tank is being filled. Because of the limited space in the tank, the air in the tank headspace becomes saturated and then is released.			
4	Good – General Ventilation – protected outdoor areas whe minimal wind)	rs (or in re is	1/1,000 th of Saturation	Typically, indoor work areas are designed to have ~ 3 to 6 ACH, typical design criteria for a manufacturing work setting.			
5	Good General Ventilation – C Displaced air	-	1/1,000 th of Saturation	Air movement outdoors under what would be considered still area is at least 1 to 2 mph. Under conditions what generate displaced air (see the 3 rd example above), the effectiveness of good ventilation is lowered.			
6	Good – General Ventilation– protected outdoor areas whe minimal wind) high ACH	rs (or in re is	1/3,000 th of Saturation	The work area is indoors but ACH are in the range of 6 to 12 ACH. Some work areas have auxiliary fans in addition to the good general ventilation to clear an area where there may have been a spill or in situations where the chemicals used in the process have high volatility.			
7	Good General Ventilation- O		1/3,000 th of Saturation	Outdoors where the wind is at least 1 to 2 mph.			
8	Capture – Local Exhaust Vent		1/10,000 th of Saturation	Mechanical ventilation is available to collect the vapor release at the source. It should be determined if the location of the hood is close enough to capture the vapor, which is dependent on the type of hood such as slot, flanged slot, plain opening, etc. Also, the air velocity in the ventilation piping must be adequate to capture the vapor. In the case of a canopy hood configuration the worker cannot be between the source of the vapor and the hood entry.			
9	Containment – Local Exhaust Ve	ntilation	1/100,000 th of Saturation	The source of the vapor is contained within an enclosure with sufficient face velocity to assure that vapors do not escape but not so high of a face velocity to cause turbulence.			

Basis of the Rule

- Rule was developed from empirical observations of exposure scenarios where quantitative measurements are available.
- Outcome of applying the rule is a point estimate of the 95th Percentile

Steps - Application of Rule of 10

- 1. Select appropriate Occupational Exposure Limit (OEL)
- 2. Determine Vapor Pressure (VP) & Saturated Vapor Concentration (SVC)
- **3.** Identify Observed Level of Control (ObsLC)
- 4. Estimate the fraction of the SVC
- 5. Calculate the maximum concentration (C_{max})
- 6. Compare C_{max} (~95th percentile) to OEL
- 7. Determine Exposure Control Category (ECC)

Group Exercise – Rule of 10

- Using hypothetical case study of pure chemical
- 'Acetic Acid'

1. Select Appropriate OEL

ACGIH TLV: TWA 10 ppm

2. Determine VP & SVC

• Using VP (pure chemical):

 $SVC = \frac{11.25 \ mm \ Hg}{760} \times \ 10^6 \ ppm$

 $= 14800 \ ppm$

3. Identify ObsLC

- good general ventilation (~ 5-6 ACH)
- * ObsLC = Observed Level of Control

4. Estimate the fraction of the SVC

Factor	Fraction of the saturation vapor concentration "SVC"	
10	Very Limited	
100	Poor	
300	Good General Ventilation - Displaced Air*	
1000	Good General Ventilation – Indoors	\sum
3000	Good - Outside***	
10000	Capture LEV	
100000	Containment	

6. Compare C_{max} to OEL

$$X_{0.95} = \frac{14.8 \, ppm}{10 \, ppm}$$

= 1.48 *or* 148%

7. Determine ECC

Cat	Min	Max	Exposure Control Category (ECC)	Recommende d Control	Respirator Assigned Protection Factors
0	0	0.01	less than 0,01		
1	0.01	0.1	0,01 to 0,1		
2	0.1	0.5	0,1 to 0,5		
3	0.5	1	0 5 to 1		
4	1	2	1 to 2		APF-10
5	2	5	2 to 5		APF-10
6	5	10	5 to 10		APF-10
7	10	25	10 to 25		APF-25
 8	25	50	25 to 50		APF-50
9	50	1000000	more than 50		APF- >50

Using SDM 2.0- Part 1

55

C Regents of the University of Minnesota, Exposure Assessment Applications, LLC, Daniel Drolet All rights reserved. If you use this tool, please cite as following

Checklist 1 - input tab

- For volatile & semivolatile chemicals
- Input steps are numbered to guide process
- Input cells are green
- Drop down menu to access database
- Select 'user' option for customized database

ESSI © AIHA	Gas and Vapors, Ir	put va	alues			SDM	2.0	Ħ
Scenario Date 8/May/22 Name Temp. 25°C Sc # 1	©		6	4 Send Table	to Analysi	5		
2 . Chemical composition		ø	Chemical	CAS #	(%)	MW	OEL ppm	VP torr
① Select substance		1						
• III	1	4						
Name MW CA5# VV 5	0	5						
Select Vapor Pressure	0	8						
VP from Antoine O DB O User Antoine	Send to table	10						
Select OFL in nom		13						
TWA STE OEL selected		15						
ACGIH	8	17						
REL NIOSH		19						
P \			Conception: Susa	n F. Arnold. Mark	Stenzel Pu	lena Mosi	hele and D	aniel Drol

Checklist 1 - input tab - link to ACGIH datahub!

	Durining Science for OPINS Fage	Q ② ₩ Profie → Join ACSIH ^e →
Scenario		About v Membership v Science v Career Development v Publications v Foundation v
Name Toluene Date 8/May/22		
User SFA Temp. 25°C	©	
Sc # 1	Data Hub	ビアビジョ ワムバム HUB
2 Chemical composition	Home > Data Hub	
Select substance Database SDM Q User's	ACGIH Data Hub	
CAS #	Data Hub provides ACGIH members a or enroll as a Data Hub subscriber, clic	and subscribers unlimited access to TLVs, BEIs, and corresponding scientific Documentation. To j
Toluene VNPG	Before viewing Documentation, ACGI	Hequires that you read the Policy Statement on the Uses of TUVs and BEIs, Special Note to Use
Name Tolyape N/W 02.1403	Chemical Substances TLVs, Introducti protected by copyright and no part of taping, or information storage and ret	the may be reproduced in any form or by any means – graphic, electronic, or mechanical includir risk as years – without written permission from AGEIH.
CAS # 108-88-3 W% 100	C Searching Instructions: The below list	
	Betther search by chemical name or CA Documentation.	
② Select Vapor Pressure	A	uocumentatia
VP from Antoine 29	Name	BFI NIC
29	Acetaldehyde	75070 DLI, NIC) With . (1 LV,
	Acetamide	60355 Click VILL JUST a
(3) Select OEL in ppm Toluene	Acetamiprid (NIC)	135410207 CUCK DV sime
IWA SIE	Acetic acid	
OSHA 200 Hub 20	C Acetic anhydride	\sim 10247 \sim Cysing in to $\frac{1}{2}$
ACGIH n/a 10 min 30 min 60 min	Acetone	
REL NIOSH 100 151 AEGL 1 67 67 67	Acetone (BEI)	
AEGL 2	Acetone cyanohydrin	7586-5
Version 1,00 : May 2022	Acetonitrile	75-05-8
8 G 🚔	Acetophenone	98862
	web analytics and measurements of visitor traffic and browsing be	<u>Cookie sertings</u>

58

Checklist 1 - input tab

 Visual cues confirm input is complete and you are ready to go to the next step

					Send Table t	o Analysis		
Scenario						\odot		
Name Toluene Case Study Date User SFA Temp.	16/May/22 25°C ©		6	Chemical	CAS #	WT (%) MW	OEL ppm	VP torr
Sc #	1		1 Toluene		108-88-3	100 92.140	2 20	29
Characterized annual titles			2					
Chemical composition			3					
) Select substance			5					
Toluene	V NPG		6					
			7					ļ
Name Toluene MW	92.1402		8					
CAO# #76	100 0	8	10					
Select Vapor Pressure			11					
VP from Antoine Antoine	29 ©	Send to table	12					
		\odot	13					
Select OEL in pom Toluene		0	14					
TWA STEL Ceiling			15					
OSHA 200 300	DEL selected		16					
LNIOSH 100 150			18					
WEEL 0000 0000 0000 0000 0000 0000 0000	G7		19					
USER								+

Checklist 1 -transfer to report tab

- When all the inputs have been entered, the data are transferred to the report tab by clicking on the red arrow
- A message will appear, confirming the transfer
- Click 'OK' to go to the report tab

Checklist 1 - report tab

- Single page format can be saved as pdf, printed
- Inputs and outputs captured
- Free text space at the bottom of the page
- Let's take a closer look!
- * note: VP should be Concentration

63

SDM 2.0 Support Fileoverview

Arnold S.F, Stenzel M. R., Mushele P. and D. Drolet, (2022). SDIM 2.0 SUPPORT FILE. Structured Deterministic Model. (Version 1,0) Software available from University of Minnesota and AIHA.org

65

Case studies to Apply the SDM 2.0 checklist 1 for pure chemicals & mixtures

Case Study 1: Foundry Shell Core - Phenol

Scenario Description:

Phenolic resins are combined with a sand mixture and then heated to make a sand mold that will be used to shape metal parts in a foundry operation. Your exposure judgment should be based on inhalation exposure to phenol, as an 8 hour TWA exposure.

Tasks:

The operator fills the molds with the sands/phenolic resin, which are then heated to form the shell core. After a few minutes, he takes the shell core out of the mold and modifies or repairs its shape, as necessary. To do this, he holds the shell core in one hand, and using the other hand, files it with a hand file. This task is repeated for the entire 8 hour shift.

Environmental conditions:

- The shell core area is approximately $5m \times 5m \times 5m = 125 \text{ m}^3$
- Air flow (Q) ~ 5-6 ACH or 10.4 m³/min was estimated, using area measurements and local air velocity data.

Agent Characterization: Phenol is used as part of the resin that holds the mold together.

CAS 101-6808 According to the msds, it is present at 1 - 5%. The estimated generation rate for phenol is 16 mg/m^3 . Vapor Pressure (mm Hg): 0.35 mm Hg @ 25 deg C

ACGIH TLV: Phenol TWA 5 ppm (19 mg/m³)

VHR in SDM2.0

67

Vapor Hazard Ratio (VHR)

Measure of a chemical's potential to exceed it's OEL.

 $VHR = \frac{VP \ (mm \ of \ Hg)}{OEL \ (ppm)}$

Mixture Heuristics

Mark Stenzel

Background

Assume the following mixture:

Chemical	Weight %
Toluene	40
Xylene	20
Ethyl acetate	20
Benzene	2
Methylene chloride	3
Carbon tetrachloride	15

Now what do I do?

- Is it valid to assume that the chemical that is the largest component, will have the highest exposure?
- Or should I look at the chemical with the lowest OEL?
- Or should I look at the chemical that has the most significant adverse health outcome?
- Or should I evaluate the most volatile component?
- Or do I have to look at all of the above?
- Or do I give up and because the problem is too complicated?

What data and information will I need to assess exposure of a mixture?

Chemical	Weight %	OEL (ppm)	Molecular Weight (MW)	Pure Vapor Pressure (VP) in mm of Hg at 25°C
Toluene	40	20	92.1	28.4
Xylene	20	100	106.2	8.74
Ethyl acetate	20	400	88.1	93.2
Benzene	2	0.5	78.1	94.8
Methylene chloride	3	25	84.9	435
Carbon tetrachloride	15	5	153.0	115
Applicable chemical and physical laws

Liquids & Vapors

- Raoult's Law
- Henry's Law

Raoult's Law

Raoult's Law: The vapor pressure of each specific component of a mixture is reduced proportional to the mole fraction of the component in the mixture

$$P_A = X_A P_A^0$$

Where:

- P_A is the vapor pressure of component A in the mixture
- X_A is the mole fraction of component A in the mixture, and
- P^0_A is the vapor pressure of the pure component A at 25°C

Henry's Law

Henry's: The vapor pressure of each specific component of a mixture is reduced by a constant times the components molar concentration.

$$\mathsf{P}_\mathsf{A} = \mathsf{k}_{\mathsf{H},\mathsf{A}}^*\mathsf{C}_\mathsf{A}$$

Where:

- P_A is the vapor pressure of component A in the mixture
- $k_{H,A}$ is the Henry's Law constant for component A
- c_A is the molar concentration (molarity) of component A in the mixture

Controlling Component

Which component is controlling?

That is, in a mixture which component has the highest potential to exceed its' corresponding OEL?

Mixture Calculations - Raoult's Law

	Α	В	С	D	Е	F	G	н	J
	WT	OEL		VP	Mole	Mole %	Adjusted	Adjusted	VHR Relative
Chemical	(%)	(ppm)	MW	(torr)	Fraction	in Liquid	VP	VHR	%
									(H/Max H)*
					A/C	E/total E	F* D	(G/B)	100
toluene	40	20	92.1	28.4	0.434	0.431	12.20	0.612	12.7%
xylene	20	100	106.2	8.74	0.188	0.187	1.63	0.016	0.3%
ethyl acetate	20	400	88.1	93.2	0.227	0.225	21.00	0.052	1.1%
benzene	2	0.5	78.1	94.8	0.026	0.025	2.41	4.814	100.0%
methylene									
chloride	3	25	84.9	435	0.035	0.035	15.20	0.610	12.7%
carbon									
tetrachloride	15	5	153	115	0.098	0.097	11.20	2.236	46.4%
Total	100				1.009	1.000	63.64	8.340	

Interpretation and Exposure Control

VHR of the mixture = 8.3 that corresponds to Vapor Hazard Ratio Scale of 3 or GGV with capture Local Exhaust Ventilation (LEV) at emission points.

Checklist 2.

Particulate Hazard Ratio for fibers, particulates, aerosols

PHR Required Level of Control (ReqLC)

OEL Range	PHR Scale	Required Levels of Control
(mg/m ³⁾		
> 5	1	General ventilation
		~ 2 to 4 air turnovers/hr.
≤ 5 to 1	2	Good – General + fans
		~ 4 to 6 air turnovers/hr.
≤ 1 to 0.1	3	Good – General + fans
		~ 6 to 8 air turnovers/hr.
≤ 0.1 to 0.01	4	Capture
≤ 0.01 to 0.001	5	Containment
≤ 0.001	6	Secondary containment

*PHR = Particulate Hazard Ratio

Aerosols – Particulate Hazard Ratio (PHR)

- Select appropriate OEL
 Identify ReqLC from PHR matrix
 Compare ReqLC with ObsLC
 Determine ECC: If ObsLC> ReqLC = Cat 1
 - If ObsLC > ReqLC = Cat TIf ObsLC = ReqLC = Cat 2If ObsLC < ReqLC = Cat 4

*OEL = Occupational Exposure Limit *ReqLC = Required Level of Control *ObsLC = Observed Level of Control *ECC = Exposure Control Category

Group Exercise #3

Case study:

- Cobalt exposure while weighing Lithium Cobalt Oxide powder
- Ingredients are weighed before being transferred to a blender for mixing.

Cobalt exposure while weighing Lithium Cobalt Oxide powder

- Weighing and mixing tasks were conducted in a clean room area where contaminants were removed by a large slot hood.
- The air exchange rate ~ 2 hr⁻¹

1. Select Appropriate OEL

 The ACGIH Short Term Exposure Limit for Cobalt is 0.02 mg/m³

2. Identify ReqLC from PHR matrix

OEL Range (mg/m ³⁾	PHR Scale	Required Levels of Control
> 5	1	General ventilation
		~ 2 to 4 air turnovers/hr.
≤ 5 to 1	2	Good – General + fans
		~ 4 to 6 air turnovers/hr.
≤ 1 to 0.1	3	Good – General + fans
		6 to 8 air turnovers/hr.
≤ 0.1 to 0.01	4	Capture
≤ 0.01 to 0.001	5	Containment
≤ 0.001	6	Secondary containment

85

3. Compare ReqLC with ObsLC

The **ReqLC** is Capture The **ObsLC** is 'General ventilation'

*ReqLC = Required Level of Control *ObsLC = Observed Level of Control

4. Determine ECC

If ObsLC > ReqLC, = Cat 1 If ObsLC - ReqLC, = Cat 2 If ObsLC < ReqLC, = Cat 4

*ReqLC = Required Level of Control *ObsLC = Observed Level of Control *ECC = Exposure Control Category

More information

- License for SDM 2.0:
- <u>https://license.umn.edu/product/structured-deterministic-model-sdm-20</u>
- Recorded videos: https://essi.umn.edu/interacct/training/#mod7
- 2-day PDC: AIHA Connect PDC 704
- <u>https://ww6.aievolution.com/aih2401/index.cfm?do=ev.viewEv&ev=</u> <u>1046</u>

Questions: Susan Arnold <u>arnol353@umn.edu</u>

UNIVERSITY OF MINNESOTA